Computational Efficiency for the Surface Renewal Method
نویسندگان
چکیده
Measuring surface fluxes using the surface renewal (SR) method requires a set of programmatic algorithms for tabulation, algebraic calculation, and quality control. Field experiments were conducted over a variety of surface conditions to determine the shortest valid time averaging period for the SR method. Because the SR method utilizes high frequency (20 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. For a study on the 10 minimum time to measure flux, several new algorithms were written to perform the required calculations more efficiently and rapidly. These algorithms demonstrate that simple modifications to SR methods can dramatically improve efficiency. Such programming techniques grant a degree of flexibility to the method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.
منابع مشابه
Water thickness effect on the fin efficiency and heat transfer for partially wet-surface heat exchanger
Heat and mass transfer, in this paper, is considered in one-row heat exchanger, that fins are hotter than air flow and water is added to fins. Related governing equations are derived by analyzing a two-dimension model in a unique cell of a heat exchange. These equations are numerically solved by finite difference method. Heat transfer and efficiency under partially wet surface are calculated by...
متن کاملInvestigation of stepped planning hull hydrodynamics using computational fluid dynamics and response surface method
The use of step at the bottom of the hull is one of the effective factors in reducing the resistance and increasing the stability of the Planning hull. The presence of step at the bottom of this type of hulls creates a separation in the flow, which reduces the wet surface on the hull, thus reducing the drag on the body, as well as reducing the dynamic trim. In this study, a design space was cre...
متن کاملSimulation of the Effect of a Baffle Structure on Membrane Efficiency Using Computational Fluid Dynamics during the Clarification of Pomegranate Juice
Background and Objectives: Pomegranate juice (PJ) contains large particles that stick to evaporator walls causing off flavors in the concentrate due to burning. Microfiltration is used to clarify PJ. Fouling is a limiting phenomenon that can prevent the industrialization of membrane clarification. Changes in the geometry of the membrane module such as using baffles are useful to decrease this p...
متن کاملMesenchymal Stem Cells: History, Isolation and Biology
Mesenchymal stem cells (MSCs) as a kind of adult stem cells possess two properties of long term selfrenewal ability and multilineage differentiation potential into skeletal cell lineages. MSCs were first isolated and described from bone marrow samples. Further investigations have identified several other tissues as alternative sources for these cells. In spite of the clinical importance of MSCs...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کامل